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A concise lemma is given for the construction of a semi – analytic Hamiltonian second
order secular J–S planetary theory using the Jacobi – Radau system of origins and in
terms of the non-singular variables of H. Poincaré. We truncate our expansions at the
desired power in the eccentricities and the sines of the inclinations.
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1. Methods and Results

The second order secular Hamiltonian equations of motion for the Jupiter – Saturn
subsystem is given by:

dLu

dt
=

∂Fs

∂λu

dλu
dt

= − ∂Fs

∂Lu

dHu

dt
=

∂Fs

∂Ku

dKu

dt
= − ∂Fs

∂Hu
(1)

dPu

dt
=

∂Fs

∂Qu

dQu

dt
= − ∂Fs

∂Pu
, u = 1, 2

Script 1 refer to Jupiter and 2 refer to Saturn where:

Fs = F0 + (F1s)P+I + (F2s)P+I . (2)

Scripts 1s, 2s refer to first order and second order secular parts, whilst scripts P , I ,
refer to principal and indirect part of the J–S planetary Hamiltonian respectively.
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F0 denotes the zero order part of the Hamiltonian.
Using the Jacobi–Radau referential, we may write

(F1s)P+I =
[
k2β1β2

(
∆−112 −m0r01r02 cos θ1,2r

−3
02

)]
s

(3)

(F2s)P+I =
[
k2β2

1β2
(
∆−312

(
r21 − r1r2 cos θ1,2

)
+ (4)

m0

(
r01r02 cos θ1,2r

−3
02 − 3

2
r201r

2
02 cos2 θ1,2r

−5
02

))]
s

(5)

The J–S Hamiltonian in terms of the Jacobian coordinates is given by:

F =
k2m0β1

2a1
+
k2m0β2

2a2
+ k2m0β2

(
1

r02
− 1

r2

)
+ σ

k2β1β2
r12

(6)

We should mention from the beginning that the Jacobi set of origins give rise to
only one perturbing function, a quite important advantage.

We adopt in our treatise the Poincare’ variables defined by

Lu = βu
√
k2m0m0uau ; λu = lu +$u

Hu =

√
2Lu

(
1 −

√
1 − e2u

)
cos$u

Ku = −
√

2Lu

(
1 −

√
1 − e2u

)
sin$u (7)

Pu =

√
2Lu

√
1 − e2u (1 − cosiu ) cosΩu

Qu = −
√

2Lu

√
1 − e2u (1 − cos iu) sin Ωu , u = 1, 2 .

These variables are consistent with the above definition of the Hamiltonian, and
we denote:

k – the Gaussian constant

m0 – mass of the Sun

au – Semi major axis of planet; u = 1, 2

σ – small parameter, of the order of planetary masses. In this study it will be
taken equal to 10−3.

σβu = mu – mass of planet; u = 1, 2

rou – distance of planet u from the Sun; u = 1, 2

ru – distance of planet u from the origin of coordinates associated with planet;
u = 1, 2

m0u = (m0 +m1 + . . .+mu−1)/(m0 +m1 + . . .+mu−1 +mu)

∆uv = ruv – mutual distance between planets u and v in Eq. (8); for a first
order J–S theory.
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In general for n planets, not only u = 1, 2, the Hamiltonian takes the form

F =

n∑
u=1

k2m0βu
2au

+

n∑
u=2

k2m0βu

(
1

r0u
− 1

ru

)
+ σ

n−1∑
u=1

n∑
v=u+1

k2βuβv
ruv

(8)

where n is the total number of planets.
For the motion of planet u, take the origin of coordinates to be the center of

mass of the Sun and the planets 1, 2, . . . , u − 1, and au, eu, iu, $u, Ωu are the
orbital elements of planet u referred to origin and axes of Jacobi, appearing in the
equalities, denoting the Poincaré variables.

Whence, for a second order secular theory we should extract the secular terms
of 1/r2 – 1/r02 and that of 1/r12, the indirect and the principal parts of the J–S
Hamiltonian respectively, i.e. the secular parts of:[

σβ1r01r02 cos θ12r
−3
02 +

σ2β2
1

(
−r01r02 cos θ12r

−3
02 − 1

2
r201r

−3
02 +

3

2
r201r

2
02 cos2 θ12r

−5
02

)]
(9)

and [
∆−112 + σβ1∆−312

(
r21 − r1r2cosθ12

)]
(10)

Whence we should find the following three terms: ∆−s, rP , r r′ cos θ. Where s =
1, 3, 5, . . .; p denotes any positive or negative real integer; θ = angle between r , r‘.
These three expressions should be firstly assigned in terms of the classical orbital
elements, and secondly in terms of the non singular variables of H. Poincaré.

By partial differentiation of Fs w.r.t. the Poincaré variables, truncating at the
fourth power of Hu, Ku, Pu, Qu, u = 1, 2, for instance, we acquire a rather short
Poisson series free from λu, in the R.H.S. of the second order secular equations of
motion.

All transformation formulas from the classical orbital elements to the Poincaré
variables are cited in [1]. A supercomputer is needed for very high degree Poisson
series multiplications.

The Macsyma programs are recommended. There is no general analytical solu-
tion for the equations of motion. But in celestial mechanics there is some special
series solutions for the equations, for instance the von Zeiple and the Hori–Lie trans-
formation procedures. When we expand to power > 2 in the Poincaré variables the
12 non-homogeneous non linear differential equations of motion may be solved by
numerical integration methods. Our aim is to acquire the values of our variables as
λ(t), H(t), K(t), P (t), Q(t) at any epoch.
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